We are conducting research on innovative space-division-multiplexing technology and multi-level modulation/demodulation technology to meet the demand of future ultra-large-capacity transmission. By combining these innovative technologies, we have made possible the world's first transmission of 1 Pbit/s per fiber.

Features
- **Feature #1**: Higher order multi-level signal transmission and digital coherent receiver technology
- **Feature #2**: Low-loss and low-crosstalk fan-in/fan-out device for splitting 12-core fiber into 12 individual fibers
- **Feature #3**: Low-crosstalk 12-core optical fiber with a newly-developed one-ring structure
- By combining the above technologies, we have demonstrated the world's first ultra-large-capacity optical transmission of over 1 Pbit/s per fiber

* Equivalent to a speed of transmitting 5,000 high-definition two-hour movies in a second

Application Scenarios
- For future Pbit/s-class long-haul core optical network

Ultra-large-capacity multi-core transmission technologies

Space-Division-Multiplexing Technologies for 1 Pbit/s Transmission

We conducted the world’s first EDFA optical amplified transmission experiment (1988), 1Tbit/s WDM optical transmission experiment (1996), and 1Pbit/s optical transmission experiment (2012), and are leading the research and development of large-capacity optical transmission technology.

* Part of this research uses results from research commissioned by the National Institute of Information and Communications Technology (NICT) entitled “Research on innovative optical fiber technology” and “Research on innovative infrastructure of optical communications”