A large-capacity transmission system based on digital coherent technology is a promising way to keep up with the demand for continuous growth of communication traffic. We have been researching and developing a photonic transmitter and receiver that support ultra-high-speed multi-level signal transmission as key devices for the next-generation photonic networks.

Features

- **Transmitter device technology**: A narrow linewidth tunable DFB laser array (TLA), compact low-voltage InP Mach-Zehender modulators, an ultra-high-speed InP IC, and their integration technologies enabled us to construct a low power and small size next-generation transmitter.

- **Receiver device technology**: A silica-based PLC-VOA integrated with polarization beam splitters as well as optical hybrids enabled the development of a small size and wide dynamic range integrated coherent receiver.

- **Next-generation ROADM module**: A reliable and mature silica-based PLC enabled the construction of highly functional, compact, integrated optical switch modules.

Application Scenarios

- Large-capacity post-100G optical communication systems such as the next-generation 400G photonic transport systems.

NTT Group Global Advantage

NTT will continue to lead the world in research and development of optical transmitter and receiver devices including the world speed record holding DAC.

*1 VOA: Variable Optical Attenuator *2 PLC: Planar Lightwave Circuit