開発の背景と取り組み

近年の情報通信需要の多様化に伴い、R&D系サービスはBフレッツに代表されるように年々拡大する傾向です。
一方、情報通信分野における競争は激化し、通信インフラの整備においても経済的構築技術が必要となり、既設設備の有効活用、徹底活用技術の開発が望まれています。
本R&D系サービスシステム研究所では、R&D系サービスに即応する地下配線管路技術として、以下の開発テーマに取り組んでいます。

・同一管路内に復元性のあるパイプを挿入し、ケーブル収容空間を確保する方式
・既設配線管路の途中から分岐管を用いて、引き込み管を分岐、構築する方式
・既設管に隣接し経済的に管を増設する方式

ここでは、上記の既設設備を有効活用する地下配線管路技術（フリーアクセス方式）について紹介します。

地下配線管路の現状

地下配線管路の形態は、工事コストの削減、サービスへの即応性などの観点から過去幾度か見直され、現状では3つの形態が混在しています（図1）。

今回はフリーアクセス方式については、1管1条布設の（1管1条布設、000000000：加入者地下引き込み）1方式により構築された配線管路を適用対象としています。
なお、西日本都市部で調査を実施したところ、既設の配線管路は、そのほとんどが000000000、000000000の管路です。また管の種類では電線ビニル管が約5割を占めますが、金属管も約4割と比較的多いことが分かりました（図2）。

フリーアクセス方式の概要

フリーアクセス方式は、お客さま引き込み管路、引き上げ管路の行き詰まりに対応するため、配線管路の任意の個所から新たな引き込み管路等を分岐させる方式です。既設配線管路を有効活用することにより、ハンドホールから分岐個所までの管路増設コストを抑制することができます（図3）。

適用条件

膨大なストックを有効活用していくためには、配線管路の種類にかかわらず幅広く適用できることが必要です。フリーアクセス方式を適用する既設管路を表1に示します。防食鋼管を除くほとんどの管路を対象としています。
また主な既設ケーブルと新たに布設する
ことができる光ケーブルの組み合わせを表2に示します。すでに収容済みのケーブルの端部を新たに布設する光ケーブルの心線数に適用上の制限があります。例えば、□□□の配線管路に□□□対のメタルケーブルが収容されている場合、新たに□□□の光ケーブルは物理的に布設できません。

よって、本方式の適用にあたっては、既設ケーブルの諸元等事前調査を十分に行う必要があります。地下配線管路は都市部商店街等に多く、基本的にケーブル布設距離が短いため、人力による布設が一般的です。

そこで、人力によるケーブル布設の引き力（約 □□□以下）を考慮し、ランドホール相互を結ぶ配線管路1条について、分岐個所数は、既設管路の端部が□□□の場合は□個所、□□□の場合は□個所以下を設計条件としています。□□□□の管路の場合、既設ケーブルが□□□対以下であれば、光ケーブルは2条まで追加布設することができます。

分岐構造

分岐部は、既設の配線管路にケーブルが収容されている場合に、新たに布設するケーブルの布設性能を損なうことなく、また既設ケーブルに損傷を与えることのない安全な施工が可能な構造としています。分岐構造の開発にあたり考慮した性能（保証する性能）を表3に示します。

硬質ビニール管への取付け構造は、現行□□□方式としてすでに標準化されている□□□□□□管からの分岐技術を応用しています（図4）。

また金属管用の分岐部は、すでに確立されている割り管、切り管の施工技術を応用し、金属管の一部を撤去し、切り分岐管を接着接合後、切りつなぎで接続する構造をしました（図5）。長尺可とう管用の分岐部については、継手構造が異なりますが、接続方式は金属管と同様です。

分岐部の防護

地下配線管路区間では、埋設物が複
図4 硬質ビニル管用分岐構造
図5 金属管用分岐構造
図6 分岐管路用リサイクル防護台

今後、本技術の標準化を図っていく予定です。

なお、この分岐管技術については、引き込み管等の行き詰まり対策だけではなく支障移転工事の縮小などの用途でも活用いただけます。検討の際には、お気軽にお相談ください。

参考文献
1. 玉井・神川・玉松：光ファイバケーブルの基本設置へのリサイクル適応、技術ジャーナル、第XX号、第XX号、XX号。

今後の展開

メタルケーブル主体の既存電話網から光ケーブル主体のへとシフトする中、本技術は光サービスの即応化・経